Telegram Group & Telegram Channel
О чём нам говорят результаты O3?

Пару недель назад были опубликованы первые эвалы новой флагманской модельки от OpenAI. Она совершила прорыв на semi-private eval в ARC и в нескольких других бенчмарках про код и математику, Какой вывод мы из этого можем сделать?

Я не знаю всех слухов и деталей, так что, поправьте в комментариях, если не прав. Сконцентируюсь на ARC, так как понимаю про него больше всего.

Прорыв при переходе от O1 к O3 произошёл от трёх изменений:

1) Увеличение ресурсов на Chain of Thought
2) Добавление тренировочных ARC-задач в обучение модели
3) Неизвестные нам изменения между моделями.

Отрывочные данные выглядят так, что ключ к успеху именно в первых двух пунктах.

В RLHF (я её не очень давно разбирал) существует 2 компоненты, отвечающие за её качество. Первая - это Reward Model (RM) - "оценщик" текста, который смотрит на него и предсказывает, несколько он "хорош". Задача оценки сильно проще задачи генерации, и такую модель обучают на больших объёмах человеческой разметки из разных источников.

Итоговая RM является потолком того, что может достичь языковой генератор, поскольку всё, что делают при его обучении - это максимизируют фидбек от RM. При этом, можно предполагать, что сам генератор умеет полностью эмулировать RM при применении к уже сгенерированному ответу.

Что делает Chain of Thought? Грубо говоря, модель генерирует рассуждение и множество вариантов ответов на запрос, а затем сама же выбирает из них финальный. Если бы RLHF работал хорошо и генератор умел генерировать текст, который ему же самому понравится в конце (т.е. и RM), то CoT бы ничего особо не давал.

Таким образом, если увеличение затрат с 20 долларов до 2000 на запрос серьёзно увеличивает профит (как в O3), то у меня для вас плохая новость - RL и тут работает, как обычно.

Тем не менее, не вижу ничего страшного. Для меня важной является принципиальная способность решить задачу, а не потраченный компьют. Если сегодня задачу можно решить за 2к долларов, значит, через 10 лет такой же алгоритм решит её за 100.

Когда тренировочные задачи из ARC добавили в обучающий датасет для O3, то задача для RM сильно упростилась. Бенчмарк вместо вопроса "Умеет ли модель решать принципиально новые задачи?" начинает задавать "Умеет ли модель решать новые задачи, похожие на обучающую выборку?". То, что O3 стала настолько лучше после добавления задач в тренировочный датасет, говорит о двух вещах:

1) Если добавлять принципиально новые задачи в тренировочный датасет, то модель как-то сможет обобщать их решения - это хороший знак
2) Если похожих задач в данных вообще нет, то модель будет работать гораздо хуже - это плохая новость для тех, кто хочет, чтобы модель с 1 пинка решала новую уникальные задачи, тем более, такие, которые в принципе не решены человеком.

Что касается использования на практике, то вряд ли я буду трогать O3 - сомневаюсь в том, что она выдаст что-то настолько интересное, за что можно заплатить 10+ долларов за ответ. Даже O1 с его 1 долларом за ответ мне было жалко дёргать, и я не смог вымолить у неё один нестандартный кусок кода за вечер. С бытовыми задачами генерации текста справлялась даже GPT-4, а писать код на работе помогает Copilot, который на основе O3 будет думать непозволительно долго. Посмотрим, как оно будет выглядеть после релиза.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/246
Create:
Last Update:

О чём нам говорят результаты O3?

Пару недель назад были опубликованы первые эвалы новой флагманской модельки от OpenAI. Она совершила прорыв на semi-private eval в ARC и в нескольких других бенчмарках про код и математику, Какой вывод мы из этого можем сделать?

Я не знаю всех слухов и деталей, так что, поправьте в комментариях, если не прав. Сконцентируюсь на ARC, так как понимаю про него больше всего.

Прорыв при переходе от O1 к O3 произошёл от трёх изменений:

1) Увеличение ресурсов на Chain of Thought
2) Добавление тренировочных ARC-задач в обучение модели
3) Неизвестные нам изменения между моделями.

Отрывочные данные выглядят так, что ключ к успеху именно в первых двух пунктах.

В RLHF (я её не очень давно разбирал) существует 2 компоненты, отвечающие за её качество. Первая - это Reward Model (RM) - "оценщик" текста, который смотрит на него и предсказывает, несколько он "хорош". Задача оценки сильно проще задачи генерации, и такую модель обучают на больших объёмах человеческой разметки из разных источников.

Итоговая RM является потолком того, что может достичь языковой генератор, поскольку всё, что делают при его обучении - это максимизируют фидбек от RM. При этом, можно предполагать, что сам генератор умеет полностью эмулировать RM при применении к уже сгенерированному ответу.

Что делает Chain of Thought? Грубо говоря, модель генерирует рассуждение и множество вариантов ответов на запрос, а затем сама же выбирает из них финальный. Если бы RLHF работал хорошо и генератор умел генерировать текст, который ему же самому понравится в конце (т.е. и RM), то CoT бы ничего особо не давал.

Таким образом, если увеличение затрат с 20 долларов до 2000 на запрос серьёзно увеличивает профит (как в O3), то у меня для вас плохая новость - RL и тут работает, как обычно.

Тем не менее, не вижу ничего страшного. Для меня важной является принципиальная способность решить задачу, а не потраченный компьют. Если сегодня задачу можно решить за 2к долларов, значит, через 10 лет такой же алгоритм решит её за 100.

Когда тренировочные задачи из ARC добавили в обучающий датасет для O3, то задача для RM сильно упростилась. Бенчмарк вместо вопроса "Умеет ли модель решать принципиально новые задачи?" начинает задавать "Умеет ли модель решать новые задачи, похожие на обучающую выборку?". То, что O3 стала настолько лучше после добавления задач в тренировочный датасет, говорит о двух вещах:

1) Если добавлять принципиально новые задачи в тренировочный датасет, то модель как-то сможет обобщать их решения - это хороший знак
2) Если похожих задач в данных вообще нет, то модель будет работать гораздо хуже - это плохая новость для тех, кто хочет, чтобы модель с 1 пинка решала новую уникальные задачи, тем более, такие, которые в принципе не решены человеком.

Что касается использования на практике, то вряд ли я буду трогать O3 - сомневаюсь в том, что она выдаст что-то настолько интересное, за что можно заплатить 10+ долларов за ответ. Даже O1 с его 1 долларом за ответ мне было жалко дёргать, и я не смог вымолить у неё один нестандартный кусок кода за вечер. С бытовыми задачами генерации текста справлялась даже GPT-4, а писать код на работе помогает Copilot, который на основе O3 будет думать непозволительно долго. Посмотрим, как оно будет выглядеть после релиза.

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/knowledge_accumulator/246

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

Export WhatsApp stickers to Telegram on Android

From the Files app, scroll down to Internal storage, and tap on WhatsApp. Once you’re there, go to Media and then WhatsApp Stickers. Don’t be surprised if you find a large number of files in that folder—it holds your personal collection of stickers and every one you’ve ever received. Even the bad ones.Tap the three dots in the top right corner of your screen to Select all. If you want to trim the fat and grab only the best of the best, this is the perfect time to do so: choose the ones you want to export by long-pressing one file to activate selection mode, and then tapping on the rest. Once you’re done, hit the Share button (that “less than”-like symbol at the top of your screen). If you have a big collection—more than 500 stickers, for example—it’s possible that nothing will happen when you tap the Share button. Be patient—your phone’s just struggling with a heavy load.On the menu that pops from the bottom of the screen, choose Telegram, and then select the chat named Saved messages. This is a chat only you can see, and it will serve as your sticker bank. Unlike WhatsApp, Telegram doesn’t store your favorite stickers in a quick-access reservoir right beside the typing field, but you’ll be able to snatch them out of your Saved messages chat and forward them to any of your Telegram contacts. This also means you won’t have a quick way to save incoming stickers like you did on WhatsApp, so you’ll have to forward them from one chat to the other.

Knowledge Accumulator from hk


Telegram Knowledge Accumulator
FROM USA